Affiliation:
1. Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
Abstract
Background: Anterior cruciate ligament (ACL) injuries often occur when an athlete experiences an unexpected disruption, or perturbation, during sports. ACL injury rates may also be influenced by the menstrual cycle. Purpose: To determine whether training adaptations to knee control and muscle activity during a perturbed single-leg squatting (SLS) task depend on menstrual cycle phase in female athletes. Study Design: Controlled laboratory study. Methods: A total of 21 healthy female collegiate athletes (current or former [<3 years]) who competed in 9 different sports performed an SLS task in which they attempted to match their knee position (user signal) to a target signal. The protocol consisted of a 9-condition pretest, 5 sets of 3 training trials, and a 9-condition posttest. One perturbation was delivered in each condition by altering the resistance of the device. Sagittal knee control (absolute error between the target signal and user signal) was assessed using a potentiometer. Muscle activity during perturbed squat cycles was normalized to maximal activation and to corresponding muscle activity during unperturbed squat cycles (%unperturbed) within the same test condition. Athletes performed the protocol during a distinct menstrual cycle phase (early follicular [EF], late follicular [LF], midluteal [ML]). Two-way mixed analysis of variance was used to determine the effects of the menstrual cycle and training on knee control and muscle activity during task performance. Venous blood was collected for hormonal analysis, and a series of health questionnaires and anthropometric measures were also assessed to determine differences among the menstrual cycle groups. Results: After training, athletes demonstrated better knee control during the perturbed squat cycles (lower absolute error, P < .001) and greater soleus feedback responses to the perturbation (%unperturbed, P = .035). Better knee control was demonstrated in the ML phase versus the EF phase during unperturbed and perturbed squat cycles ( P < .039 for both). Quadriceps activation was greater in the ML phase compared with the EF and LF phases, both immediately before and after the perturbation ( P < .001 for all). Conclusion: Athletes learned to improve knee control during the perturbed performance regardless of menstrual cycle phase. The best knee control and greatest quadriceps activation during the perturbed squatting task was found in the ML phase. Clinical Relevance: These findings may correspond to a lower incidence of ACL injury in the luteal phase and alterations in exercise performance across the menstrual cycle.