Using Machine Learning to Predict Nonachievement of Clinically Significant Outcomes After Rotator Cuff Repair

Author:

Alaiti Rafael Krasic12,Vallio Caio Sain3,Assunção Jorge Henrique45,Andrade e Silva Fernando Brandão de4,Gracitelli Mauro Emilio Conforto4,Neto Arnaldo Amado Ferreira4,Malavolta Eduardo Angeli46

Affiliation:

1. Research, Technology, and Data Science Office, Grupo Superador, São Paulo, Brazil

2. Universidade de São Paulo, São Paulo, Brazil

3. Health Innovation, Data Science, and MLOps, Semantix, São Paulo, Brazil

4. Faculdade de Medicina, Hospital das Clinicas FMUSP, Universidade de São Paulo, São Paulo, Brazil

5. DASA, Hospital 9 de Julho, São Paulo, São Paulo, Brazil

6. Hospital do Coração, São Paulo, Brazil

Abstract

Background: Although some evidence suggests that machine learning algorithms may outperform classical statistical methods in prognosis prediction for several orthopaedic surgeries, to our knowledge, no study has yet used machine learning to predict patient-reported outcome measures after rotator cuff repair. Purpose: To determine whether machine learning algorithms using preoperative data can predict the nonachievement of the minimal clinically important difference (MCID) of disability at 2 years after rotator cuff surgical repair with a similar performance to that of other machine learning studies in the orthopaedic surgery literature. Study Design: Case-control study; Level of evidence, 3. Methods: We evaluated 474 patients (n = 500 shoulders) with rotator cuff tears who underwent arthroscopic rotator cuff repair between January 2013 and April 2019. The study outcome was the difference between the preoperative and 24-month postoperative American Shoulder and Elbow Surgeons (ASES) score. A cutoff score was calculated based on the established MCID of 15.2 points to separate success (higher than the cutoff) from failure (lower than the cutoff). Routinely collected imaging, clinical, and demographic data were used to train 8 machine learning algorithms (random forest classifier; light gradient boosting machine [LightGBM]; decision tree classifier; extra trees classifier; logistic regression; extreme gradient boosting [XGBoost]; k-nearest neighbors [KNN] classifier; and CatBoost classifier). We used a random sample of 70% of patients to train the algorithms, and 30% were left for performance assessment, simulating new data. The performance of the models was evaluated with the area under the receiver operating characteristic curve (AUC). Results: The AUCs for all algorithms ranged from 0.58 to 0.68. The random forest classifier and LightGBM presented the highest AUC values (0.68 [95% CI, 0.48-0.79] and 0.67 [95% CI, 0.43-0.75], respectively) of the 8 machine learning algorithms. Most of the machine learning algorithms outperformed logistic regression (AUC, 0.59 [95% CI, 0.48-0.81]); nonetheless, their performance was lower than that of other machine learning studies in the orthopaedic surgery literature. Conclusion: Machine learning algorithms demonstrated some ability to predict the nonachievement of the MCID on the ASES 2 years after rotator cuff repair surgery.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3