Affiliation:
1. Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Republic of Korea
2. Department of Orthopaedic Surgery, Seoul Red Cross Hospital, Seoul, Republic of Korea
Abstract
Background: The biomechanical properties of the 1.2-mm suture tape have outperformed conventional sutures in previous studies. Purpose: To compare the loop and knot security of 2 tape-type and 1 cord-type sutures using different arthroscopic knot techniques. Study Design: Controlled laboratory study. Methods: The biomechanical characteristics of the 1.2-mm tape, 2.0-mm tape, and 0.5-mm No. 2 suture were compared using 4 different knot types: 2 sliding knots (Samsung Medical Center [SMC] and Tennessee) and 2 nonsliding knots (2-throw surgeon’s and 2-throw square) with 2 and 3 additional reverse half-hitches on alternating posts (RHAPs) in a closed-loop system on a materials testing device. Each configuration was tested for loop security (maximal load applied between 0 and 3 mm of displacement), knot security (ultimate failure load), and failure mode with cyclical loading (30 N load for 20 cycles at 1 cycle per sec until failure). Loop and knot security among the configurations were compared using an analysis of variance. Results: With 2 RHAPs, the 2.0-mm tape showed significantly greater loop security than the 1.2-mm tape and suture ( P = .001). With 3 RHAPs, the loop security of the suture was significantly superior compared with the 1.2-mm tape ( P = .010). Regarding knot security, with 2 RHAPs, the 2.0-mm tape was significantly better than the 1.2-mm tape and suture ( P < .001), while with 3 RHAPs, the suture was significantly superior to the 1.2-mm tape ( P = .012). Using a square knot with 2 RHAPs, the 2.0-mm tape had significantly greater loop security ( P = .001) and better knot security ( P = .001) to the 1.2-mm tape and suture. Using the Tennessee knot with 2 RHAPs, the 1.2-mm tape had less loop security ( P = .011) and knot security ( P = .005) than the suture. Using the SMC knot with 3 RHAPs, the 2.0-mm tape and suture were significantly superior in loop security ( P = .001) and knot security ( P < .001) to the 1.2-mm tape. There was no significant difference in the failure mode between tapes and sutures with 2 and 3 RHAPs. Conclusion: With 2 RHAPs, the 2.0-mm tape demonstrated greater resistance to suture loop displacement and better knot security compared with the 1.2-mm tape and suture. However, with 3 RHAPs, the 1.2-mm tape manifested weaker loop and knot security compared with the suture.
Subject
Orthopedics and Sports Medicine