The Relationship Between Lateral Femoral Anatomic Structures and the Femoral Tunnel Outlet in Anterior Cruciate Ligament Reconstruction Using the Transportal Technique: A 3-Dimensional Simulation Analysis

Author:

Chung Kwangho12,Choi Chong Hyuk1,Kim Sung-Hwan1,Kim Sung-Jae1,Do Woosung3,Jung Min1

Affiliation:

1. Arthroscopy and Joint Research Institute, Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.

2. Department of Orthopaedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Republic of Korea.

3. Department of Orthopaedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.

Abstract

Background: The relationship between the lateral femoral anatomic structures and femoral tunnel outlet according to changes in knee flexion and transverse drill angle during femoral tunnel creation in anterior cruciate ligament (ACL) reconstruction remains unclear. Purpose: To investigate the relationships between the lateral femoral anatomic structures and femoral tunnel outlet according to various knee flexion and transverse drill angles and to determine appropriate angles at which to minimize possible damage to the lateral femoral anatomic structures. Study Design: Controlled laboratory study. Methods: Simulation of ACL reconstruction was conducted using a 3-dimensional reconstructed knee model from the knees of 30 patients. Femoral tunnels were created using combinations of 4 knee flexion and 3 transverse drill angles. Distances between the femoral tunnel outlet and lateral femoral anatomic structures (minimum safe distance, 12 mm), tunnel length, and tunnel wall breakage were assessed. Results: Knee flexion and transverse drill angles independently affected distances between the femoral tunnel outlet and lateral femoral anatomic structures. As knee flexion angle increased, the distance to the lateral collateral ligament, lateral epicondyle, and popliteal tendon decreased, whereas the distance to the lateral head of the gastrocnemius increased ( P < .001). As the transverse drill angle decreased, distances to all lateral femoral anatomic structures increased ( P < .001). Considering safe distance, 120°, 130°, or 140° of knee flexion and maximum transverse drill angle (MTA) could damage the lateral collateral ligament; 130° or 140° of knee flexion and MTA could damage the lateral epicondyle; and 110° or 120° of knee flexion and MTA could damage the lateral head of the gastrocnemius. Tunnel wall breakage occurred under the conditions of MTA – 10° or MTA – 20° with 110° of knee flexion and MTA – 20° with 120° of knee flexion. Conclusion: Approximately 120° of knee flexion with MTA – 10° and 130° or 140° of knee flexion with MTA – 20° or MTA – 10° could be recommended to prevent damage to the lateral femoral anatomic structures, secure adequate tunnel length, and avoid tunnel wall breakage. Clinical Relevance: Knee flexion angle and transverse drill angle may affect femoral tunnel creation, but thorough studies are lacking. Our findings may help surgeons obtain a stable femoral tunnel while preventing damage to the lateral femoral anatomic structures.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3