Qualitative and Quantitative Anatomy of the Human Quadriceps Tendon in Young Cadaveric Specimens

Author:

Strauss Marc123,Kennedy Mitchell L.3,Brady Alex3,Moatshe Gilbert12,Chahla Jorge4,LaPrade Robert F.5,Lind Martin6,Engebretsen Lars123

Affiliation:

1. Department of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway.

2. Department of Sports Medicine, Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, Norway.

3. Steadman Philippon Research Institute, Vail, Colorado, USA.

4. Rush University Medical Center, Chicago, Illinois, USA.

5. Twin Cities Orthopedics, Minneapolis, Minnesota, USA.

6. Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark.

Abstract

Background: A detailed understanding of the anatomy of the quadriceps tendon (QT) is clinically relevant, owing to its increased use as a graft in anterior cruciate ligament reconstruction. Purpose: To qualitatively and quantitatively describe the anatomy of the QT in younger adult specimens. Study Design: Descriptive laboratory study. Methods: A total of 18 nonpaired cadaveric knees with a mean age of 30.1 years (range, 18-38 years) were utilized for this study. A 3-dimensional coordinate measuring system was used to assess the structural relationships between the different layers of the QT and their attachments to the patella, and QT thickness was measured medially, centrally, and laterally at 2-cm intervals from the patellar eminence line (PEL; defined as a straight line between the medial and lateral patellar eminences) and proximally. Results: In all specimens, 3 distinct layers formed the QT. The first (superficial) layer was formed by the rectus femoris, which was fused to the second layer with an unclearly defined direct attachment to the patella. The median length of the QT was 86.9 mm (range, 68.4-98.9 mm). The second (middle) layer consisted of the vastus medialis and vastus lateralis and was found to have fibers running in an oblique direction that attached on the patella. A “fuse point,” where the proximal part of the rectus femoris started to merge to the second layer, was identified at a median of 48.7 mm (range, 27.9-62.6 mm) from the PEL. The third (deep) layer consisted of the vastus intermedius. The median thickness of the graft centrally at 20, 40, 60, 80, and 100 mm from the PEL was 8.5, 7.2, 7.5, 6.5, and 5.4 mm, respectively. Conclusion: Overall, 3 different layers of the QT were consistently found in all specimens. The first layer was fused with the second layer, and the direction of the fibers of the second layer or the vastus medialis and vastus lateralis was oblique. The median length of the QT was 86.9 mm, and the thickness of the tendon diminished proximally. Clinical Relevance: This study allows for a better understanding of QT anatomy when harvesting the tendon as a graft for ligamentous reconstruction.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3