Static and dynamic characteristics and stability analysis of high-speed water-lubricated hydrodynamic journal bearings

Author:

Xu Bo12ORCID,Guo Hun12,Wu Xiaofeng1,He Yafeng12,Wang Xiangzhi12,Bai Jianhui12

Affiliation:

1. School of Aeronautics and Mechanical Engineering, Changzhou Institute of Technology, P.R. China

2. Key Laboratory of Special Processing of College and University of Jiangsu Province, P.R. China

Abstract

The purpose of this paper is to analyze the influence of turbulent, inertia, and misaligned effects on the static and dynamic characteristics and stability of high-speed water-lubricated hydrodynamic journal bearings. Based on the Navier–Stokes equation, the mixing-length theory, and the essential assumption that the velocity profile is not strongly affected by inertia force, the fluid lubrication model with turbulent, inertia, and misaligned effects is established, and then the stability analysis of bearings is carried out based on the equation of motion with four degrees of freedom. The model is solved by the finite difference method and the numerical results are compared under different operating conditions. The results show that the turbulent effect greatly increases the load capacity, power consumption, stiffness and damping coefficients, and stability of bearings, and the inertia effect significantly increases the volume flow rate of bearings, and the misaligned effect increases the load capacity, stiffness and damping coefficients, and stability of bearings. In high rotary speed and moderate eccentricity ratios, the influence of the inertia effect on the load capacity, stiffness coefficients, and stability cannot be neglected.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3