Numerical analysis on the start behavior of rough journal bearings during the gear pump meshing cycle

Author:

Zhu Jiaxing1ORCID,Li Huacong1,Fu Jiangfeng1,Liu Xianwei1,Wang Shang1

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an, Shaanxi, People’s Republic of China

Abstract

In this paper, the transient lubrication characteristics of hydrodynamic journal bearings during the external gear pump meshing cycle are studied. In the bearings lubrication calculation part, a numerical model is developed to assess the transient lubrication during the initial start-up of an aero gear pump. The model takes into account the effects of surface topography, asperities contact, and pump start-up speed. In the pump simulation part, the flow inside pump and bearing load environment are analyzed by a computational fluid dynamics model. Then a simulation method is presented to solve the problem of pump-bearings system, considering the pump’s influence during bearings lubrication calculation. To gain insight, results of a series of simulations with illustrative examples are presented. The variation of the startup lubrication performance under load conditions corresponding to the pump internal flow field is acquired. The results show that bearings operate from mixed-lubrication to hydrodynamic-lubrication state with changed load-supporting effects during the startup. The load-supporting effects and film rupture boundary are directly related to the pump load fluctuation, but the center trace is slightly influenced except on the hydrodynamic-lubrication state.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lubrication Performance Analysis of Fuel Gear Pump Sliding Bearing under High Speed and Wide Temperature Range;2022 13th International Conference on Mechanical and Aerospace Engineering (ICMAE);2022-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3