Influence of bearing surface irregularities on hybrid slot-entry journal bearing with electrically conducting lubricant

Author:

Sahu Krishnkant1ORCID,Sharma Satish C1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Tribology Laboratory, Indian Institute of Technology, Roorkee, Roorkee, India

Abstract

This study concerns with the numerical simulation of a hybrid slot entry journal bearing lubricated with electrically conducting lubricant under the influence of magnetic field for both thermal and isothermal conditions. The Navier–Stokes equation has been used to formulate the flow of electrically conducting lubricant through slot restrictor and combining the Lorentz force in the equations of motion, together with the Ohm’s law and Maxwell equations. Further, the effect of surface irregularities on bearing surface is considered to analyse the performance of the slot-entry bearing. The surface irregularities asperity profile has been modelled in both axial as well as circumferential directions. Finite element method is used to solve the Modified MHD Reynolds equation. To compute the bearing performance characteristic parameters, a MATLAB source code based on Gauss–Seidel iteration method has been developed. A comparative numerical analysis has been carried out for an electrically conducting lubricant, Newtonian lubricant, bearing surface having irregularities and bearing with smooth surface. The numerically simulated results indicate that considering the bearing surface irregularities and MHD effects enhances the value of fluid film damping coefficients [Formula: see text] and the value of minimum fluid film thickness [Formula: see text].

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3