Modelling of transient flow of piston ring-liner contact using synthetic lubricants

Author:

Zavos Anastasios1ORCID,Nikolakopoulos Pantelis G1

Affiliation:

1. Machine Design Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, Greece

Abstract

The paper contains the results of the transient flow of piston ring conjunction of a single-cylinder motorbike engine. Calculations of piston ring forces, asperity contact and gas blow-by are determined in computational fluid dynamics. The stochastic model of Greenwood-Tripp approach is used to predict the load of asperities. The hydrodynamic friction is also calculated by means of computational fluid dynamics including the multi-phase flow through Rayleigh–Plesset equation and a discrete phase model for simulating nanoparticles interaction. The major contribution of this analysis is to specifically investigate the impact of the lubricant with additives and the corresponding transient effects such as hydrodynamic pressure, cavitation and lubricant film within the contact. The results indicate that to investigate realistic mechanisms of multi-phase flow in piston ring-liner contact, the contribution of nanoparticles should be matched with the type of lubricants. In addition, this advanced computational fluid dynamics model showed that nanoparticles motion is important in reciprocating line contacts, leading to lower boundary friction in the order of 8.8% than a simple model where cavitation and nanoparticles are ignored.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3