Theoretical and experimental investigation of non-asbestos friction lining material applied in automotive drum brake

Author:

Shinde Dinesh Subhash12,Mistry KN2,Bulsara Mukesh23

Affiliation:

1. SVKM’s Narsee Monjee Institute of Management Studies (deemed to be UNIVERSITY), Mukesh Patel School of Technology Management and Engineering, Shirpur, Dhule, Maharashtra, India

2. Mechanical Engineering, Gujarat Technological University, Ahmedabad, Gujarat, India

3. Mechanical Engineering Department, G. H. Patel College of Engineering, V. V. Nagar, Anand, Gujarat, India

Abstract

Automotive brakes are the important machine element which provides an artificial frictional resistance to control the speed of an automobile. In the present work, theoretical models for the coefficient of friction between brake drum and friction liner are generated and simulated using MATLAB Simulink. A test set up designed and manufactured according to the brake lining quality test procedure (SAE J661) is used to investigate tribological properties of a non-asbestos friction lining material having 11 different constituents, which is manufactured from one of the brake liner manufacturer. An experiment is designed using response surface methodology (RSM) with vehicle speed, braking force, and sliding distance as the input parameters, whereas coefficient of friction and wear as an output. It is found that vehicle speed is the most significant parameter among the three. Fade and recovery behavior of the friction lining material is also studied and it is found that the developed friction lining material satisfies the criteria specified in SAE J661. Scanning electron microscope (SEM) and energy dispersive spectoscopy (EDS) have revealed the significant surface phenomenon.

Funder

SVKM's Narsee Monjee Institute of Management studies (NMIMS) University

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wear analysis of eco-friendly non-asbestos friction-lining material applied in an automotive drum brake: Experimental and finite-element analysis;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2021-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3