Evaluation of tribological behavior of a circulation oil with ionic liquid and hybrid additives

Author:

Ta Thi-Na12,Horng Jeng-Haur1ORCID

Affiliation:

1. Department of Power Mechanical Engineering, National Formosa University, Huwei, Yunlin, Taiwan (R.O.C)

2. Department of Mechanical Engineering, WuFeng University, Minhsiung, Chiayi County, Taiwan (R.O.C)

Abstract

In this study, the synergistic effects of methyltrioctylammonium bis(trifluoromethylsulfonyl)imide [N1888] [NTf2] ionic liquid (IL) with zinc dialkyldithiophosphate (ZDDP) and zinc oxide (ZnO) nanoparticles (NPs) as hybrid additives in a circulation oil for steel–steel contacts at different temperatures. The wear test results indicated that the additions of single additives (IL, ZDDP, and ZnO NPs) could enhance the tribological performance of the circulation oil. Among these additives, the IL exhibited the most effective at the same weight concentration blended into the tested oil. The mixture of IL and ZDDP showed superior friction-reducing and wear-reducing properties compared to the IL + ZnO formulation. The hybrid additive formulation consisting of 0.5 wt% IL, 0.25 wt% ZDDP, and 0.25 wt% ZnO NPs exhibited excellent tribological properties at higher temperatures in the boundary lubrication regime. Analysis using scanning electron microscopy/energy dispersive X-ray reveals that all single additives contribute to the formation of a tribofilm wear mechanism. However, the role of ZnO NPs in the hybrid additive conditions was changed from the most likely tribosintering effect to the most likely nano bearing effect at 100 °C. The interactions among IL, ZDDP, and NPs examined in this study can provide fundamental insights for the development of future lubricants.

Funder

Ministry of Science and Technology, Taiwan

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3