Transient tribo-dynamic performance of journal bearings considering wear behavior during start-up

Author:

Wei Chunjie1ORCID,Liao Guiwen1,Wang Wei1,Xu Jimin1ORCID,Liu Kun1

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Anhui Hefei, China

Abstract

The transient tribo-dynamics and wear model are coupled to study the mixed lubrication-wear behavior during start-up. The coupled numerical model involves the film thickness equation with wear depth and a time-varying wear coefficient to account for the impact of transient mixed lubrication behavior on wear. In this study, the evolution of wear and mixed lubrication performance distribution over time is predicted, and the impact of acceleration mode, acceleration time, external load, lubricant viscosity, and start-up time on the numerical predictions is evaluated. The findings demonstrate that wear behavior, particularly in the analysis of the effects of acceleration mode and acceleration time, has a significant impact on the evaluation of the bearing-rotor system's start-up performance and even changes the determination of optimal parameters. Furthermore, the parametric study demonstrates that wear and mixed lubrication performance are sensitive to the external load and lubricant viscosity. Finally, studies on the effect of start-up times show that proper wear geometry promotes hydrodynamic effects, but severely worn bearing surfaces have a negative effect on start-up.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient instability characteristics of fluid film bearings induced by bubble inclusion;Physics of Fluids;2024-06-01

2. Effects of turbulence and bush wear on the transient tribo-dynamic characteristics of water-lubricated bearings;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2024-02-25

3. High-Speed Bearing Dynamics and Applications in Production Lines;International Journal of Simulation Modelling;2023-12-01

4. Analysis of flow diffusion of secondary lubricant in water-lubricated bearings;Physics of Fluids;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3