Effect of reinforcements on graphite/titania/aluminium nanohybrid composites

Author:

Reddy Yendapalli Kishor Kumar1,Hussain Shaik Althaf1,Narahari Vamsee Krishna Reddy1,Pramanik Sumit1ORCID,Bhaumik Shubrajit2ORCID

Affiliation:

1. Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India

2. Wagner High Quality Lubricants, Chennai, Tamil Nadu, India

Abstract

Aluminium alloys and their composites are often used in aerospace, automobile and biomedical applications. However, mechanical and surface properties of those alloys have not reached up to the expectation. This investigation focused to improve the wear resistance properties along with mechanical and surface properties of aluminium matrix composites. Here, novel aluminium matrix nanohybrid composites were developed using titanium oxide and graphite as reinforced via powder metallurgical route. The sintered samples were analysed by different tests such as, hardness, surface roughness, wear tests and other structural analyses. The obtained results showed that some new compounds formed during sintering were responsible for improved mechanical and surface properties for different applications. The wear test showed that there was rapid worn out of graphite from the composites having aluminium content more than 50 wt% due to the higher content of graphite (10 and 20 wt%, respectively). In addition, due to the increase of porosity in the different hybrid composites, there was an increase in coefficient of friction observed in some materials. The aluminium nanohybrid composite having 40 wt% titania and 10 wt% graphite showed best results compared with others. Therefore, the optimized hybrid composites with proper sintering condition would significantly help to get suitable structural, mechanical as well as tribological properties for many advanced applications.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3