Affiliation:
1. Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
2. Wagner High Quality Lubricants, Chennai, Tamil Nadu, India
Abstract
Aluminium alloys and their composites are often used in aerospace, automobile and biomedical applications. However, mechanical and surface properties of those alloys have not reached up to the expectation. This investigation focused to improve the wear resistance properties along with mechanical and surface properties of aluminium matrix composites. Here, novel aluminium matrix nanohybrid composites were developed using titanium oxide and graphite as reinforced via powder metallurgical route. The sintered samples were analysed by different tests such as, hardness, surface roughness, wear tests and other structural analyses. The obtained results showed that some new compounds formed during sintering were responsible for improved mechanical and surface properties for different applications. The wear test showed that there was rapid worn out of graphite from the composites having aluminium content more than 50 wt% due to the higher content of graphite (10 and 20 wt%, respectively). In addition, due to the increase of porosity in the different hybrid composites, there was an increase in coefficient of friction observed in some materials. The aluminium nanohybrid composite having 40 wt% titania and 10 wt% graphite showed best results compared with others. Therefore, the optimized hybrid composites with proper sintering condition would significantly help to get suitable structural, mechanical as well as tribological properties for many advanced applications.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献