Influence of sizes on tribological properties and tribofilm formation of lanthanum borate nanospheres in soybean oil

Author:

Lin Wang1ORCID,Chen Boshui1ORCID,Fang Jianhua1,Gu Kecheng1,Wu Jiang1

Affiliation:

1. Department of Oil, Army Logistics University of PLA, Chongqing, China

Abstract

Vegetable oils exhibit excellent lubrication properties owing to their polar functional groups, which are liable to adsorb on the metal surfaces to form adsorption film and tribofilm. Additionally, nanoparticles play significant roles in enhancing the tribological performances of base oils by means of forming a tribofilm between friction parts. However, little work has been done on clarifying the interaction of nanoparticles and vegetable oils in the film-forming process. In this paper, two varieties of lanthanum borate nanospheres with average diameters of 50 nm (named LBN-1) and 105 nm (named LBN-2) were synthesized. The morphologies, size distribution, and chemical compositions of the nanospheres were characterized using a scanning electron microscopy, dynamic light scattering, Fourier transform infrared, and X-ray diffraction. The tribological characteristics of soybean oils with lanthanum borate nanospheres were evaluated by a four-ball tribo-tester. The tribological performances of soybean oils were obviously improved by lanthanum borate nanospheres. The focused-ion beam/transmission electron microscope analyses results revealed a uniform tribofilm containing LBN-1 was formed, contributing to excellent friction-reducing and anti-wear performances. Whereas the tribofilm of soybean oil/LBN-2 was uneven in thickness and contained more wear debris. The outcome of this work provides significant insights into the tribofilm formation for metal surfaces lubricated with vegetable oils containing different sizes of lanthanum borate nanoparticles.

Funder

Young Found of Army Logistics University

Chongqing Graduate Research and Innovation Project

Natural Science Foundation of Chongqing, China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3