Experimental investigation of aluminum matrix functionally graded material: Microstructural and hardness analyses, fretting, fatigue, and mechanical properties

Author:

Ulukoy A1,Topcu M2,Tasgetiren S3

Affiliation:

1. Manufacturing Engineering Department, Faculty of Technology, Pamukkale University, Denizli, Turkey

2. Mechanical Engineering Department, Faculty of Engineering, Pamukkale University, Denizli, Turkey

3. Biomedical Engineering Department, Faculty of Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey

Abstract

This study investigated the mechanical properties of aluminum matrix functionally graded material (FGM) reinforced by integration of aluminum 2014 alloy (AlCu4SiMg) and 15 vol% SiC. The specimens were obtained by centrifugal casting technique, followed by aging treatment. The variations that occurred in microstructure, hardness, Young’s modulus, tensile strength, yield strength, elongation, fatigue, and fretting fatigue behaviors were analyzed. In both cast and aged conditions, it was observed that hardness values and mechanical properties changed between SiC-rich and aluminum-rich regions. Fatigue and fretting fatigue data were similar. It was determined that greater wear was occurring on the pad surfaces compared to that occurring on the sample surfaces.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3