Effect of friction modifiers compositions on tribological properties of Cu-Sn alloy/Al2O3 brake composite material

Author:

Singh Vaibhav1ORCID,Raja P2ORCID,Katiyar Jitendra Kumar1ORCID,Ramkumar P2ORCID

Affiliation:

1. Department of Mechanical Engineering, SRM Institute of Science and Technology, Chennai, India

2. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India

Abstract

Brakes are very important component in any vehicle, used to stop the motion of it either by applying mechanical or hydraulic pressure on brake pads. By engaging and disengaging of braking action, the surface of brake components (or) materials is ruined after some time. Therefore, it is important to study and develop a new composition of brake materials which provides optimum coefficient of friction along with increasing wear resistance to the materials. Hence, new combination has been formulated for fabrication of brake composite material using powder metallurgy method which consist of copper-tin alloy mixed with silicon carbide as a base materials, aluminium oxide as an abrasive material with varying volume percentage of graphite and talc powder as a friction modifiers. The pin-on-disc test was performed on brake composite material to analyse their tribological properties namely friction and wear. From tribo-test, it was observed that all composites give the friction coefficient in the range of ∼0.33–0.51 and the loss of materials in the range of ∼79–131 mg. Further, the mechanical, thermal stability and surface characterization were also carried out on brake composites using universal testing machine, vicker’s hardness tester, thermogravimetric analyser and scanning electron microscope respectively. These results reveal a very marginal change in hardness, increase in compressive strength by increase of talc concentration to the matrix, uniform distribution of reinforcement into the matrix and multi stage degradation of material loss in thermograph.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3