Influence of different environments on the sliding friction of Ultra-high-molecular-weight polyethylene (UHMWPE)

Author:

Zivic Fatima1ORCID,Adamovic Dragan1ORCID,Mitrovic Slobodan1ORCID,Grujovic Nenad1ORCID,Tanaskovic Jovan2ORCID,Stojadinovic Ivan3ORCID

Affiliation:

1. Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia

2. Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia

3. Clinic for Orthopaedics and Traumatology, University Clinical Center, Kragujevac, Serbia

Abstract

Dynamic friction coefficient (COF) of the reciprocating sliding contact of the conventional UHMWPE, was investigated in four different environments (dry contact; distilled water; pure Ringer's solution and with PMMA particles), at five values of low normal load (0.1–1 N) and three values of sliding speed (4 - 12 mm/s). Significant differences of COF values occurred at the lowest load (0.1 N), whereas sliding speed did not influence COF values. Addition of PMMA particles in Ringer's solution produced significant increase of COF values, especially at the lowest load of 0.1 N. For the dry contact and the highest load (1 N), steady state was reached shortly after the beginning of the test and friction coefficient had uniform behaviour. In the case of wet environment and the lowest load, steady state was not reached and the friction coefficient exhibited non-reproducible random behaviour. According to the Hertz theory, 0.5 N load corresponded to the elastic stress of 48.7 MPa, thus surpassing the values of the elastic limits, hardness and true yield stress of the UHMWPE, and the behaviour of the friction coefficient was drastically different below and above this load value. It can be assumed that below the 0.5 N load, viscoelastic response, accompanied with plastic deformation is dominant, with transition to mainly plastic deformation for the higher loads.

Funder

Ministry of Education, Science and Technological Development, Serbia

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3