Performance analysis of multi-leaf oil lubricated foil bearing

Author:

Hu Liguo1,Zhang Guanghui1,Liu Zhansheng1,Ma Ruixian1,Wang Yu1,Zhang Jinfeng1

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, People's Republic of China

Abstract

The traditional bearing applied in the turbo-pump for the hydraulic servo system is rolling element bearing. To satisfy the demand of the high rotating speed for turbo-pump, the oil lubricated foil bearing can be employed in the rotor system. For the working liquid of the servo system is oil and the rotor for the turbo pump is submerged in the hydraulic oil, the bearing has to operate in an oil-rich environment, where the air bearing cannot be employed. The theoretical analysis and numerical simulation are carried out in this study to investigate the static and dynamic characteristics of multi-leaf oil lubricated foil bearing. For the structure form of the multi-leaf foil bearing with five symmetrical arrangements, the foil deformation equation and the Reynolds equation are solved coupled by successive over relaxation method, where the Reynolds boundary condition is employed. Then the load capacity, lift-off speed and static equilibrium position are acquired. By deriving the dynamic deformation equation of the foil, the dynamic stiffness coefficients and damping coefficients are obtained based on the perturbation method. The effect of the rotating speed and perturbation frequency on dynamic characteristics is analyzed. It indicates that the load capacity of the multi-leaf foil bearing is smaller than that of the fixed geometry oil bearing without foil deformation, whereas the stability of the bearing is increased.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3