On lower-dimensional models in lubrication, Part B: Derivation of a Reynolds type of equation for incompressible piezo-viscous fluids

Author:

Almqvist Andreas1ORCID,Burtseva Evgeniya1,Rajagopal Kumbakonam2,Wall Peter1

Affiliation:

1. Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden

2. Department of Mechanical Engineering, Texas A&M University, Texas, USA

Abstract

The Reynolds equation is a lower-dimensional model for the pressure in a fluid confined between two adjacent surfaces that move relative to each other. It was originally derived under the assumption that the fluid is incompressible and has constant viscosity. In the existing literature, the lower-dimensional Reynolds equation is often employed as a model for the thin films, which lubricates interfaces in various machine components. For example, in the modelling of elastohydrodynamic lubrication (EHL) in gears and bearings, the pressure dependence of the viscosity is often considered by just replacing the constant viscosity in the Reynolds equation with a given viscosity-pressure relation. The arguments to justify this are heuristic, and in many cases, it is taken for granted that you can do so. This motivated us to make an attempt to formulate and present a rigorous derivation of a lower-dimensional model for the pressure when the fluid has pressure-dependent viscosity. The results of our study are presented in two parts. In Part A, we showed that for incompressible and piezo-viscous fluids it is not possible to obtain a lower-dimensional model for the pressure by just assuming that the film thickness is thin, as it is for incompressible fluids with constant viscosity. Here, in Part B, we present a method for deriving lower-dimensional models of thin-film flow, where the fluid has a pressure-dependent viscosity. The main idea is to rescale the generalised Navier-Stokes equation, which we obtained in Part A based on theory for implicit constitutive relations, so that we can pass to the limit as the film thickness goes to zero. If the scaling is correct, then the limit problem can be used as the dimensionally reduced model for the flow and it is possible to derive a type of Reynolds equation for the pressure.

Funder

Vetenskapsrådet

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3