A semianalytical method for studying the performances of aerostatic thrust bearing

Author:

Zhang Jianbo1,Jiao Chunxiao1,Zou Donglin1,Ta Na1,Rao Zhushi12

Affiliation:

1. Institute of Vibration, Shock and Noise, State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, P.R. China

2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, P.R. China

Abstract

The solution of Reynolds equation and computational fluid dynamics are widely employed for the lubrication performance analysis of aerostatic thrust bearing. However, the solution of Reynolds equation may be inaccurate and cannot present detailed performance near orifice, while computational fluid dynamics method has low computational efficiency with time consumption in mesh generation and solving Navier–Stokes equations. In order to overcome the drawbacks of Reynolds equation and computational fluid dynamics, based on the method of separation of variables, a semianalytical method is developed for describing the characteristics of aerostatic bearings available. The method of separation of variables considering the initial and viscous effect is more accurate than the Reynolds equation and can present detailed performance near orifice in the aerostatic thrust bearings, while method of separation of variables has great computational efficiency compared to computational fluid dynamics. Meanwhile, the pressure distribution calculated by method of separation of variables is compared to the published experimental data and the results obtained by computational fluid dynamics. The comparative results indicate validity of the method. Furthermore, the influences of flow and geometry parameters, such as supply pressure, orifice diameter, film thickness, and bearing radius, on the characteristics of aerostatic thrust bearings with single orifice are studied. The results show that there exists pressure depression phenomenon near orifice. The depression phenomenon is strengthened with increase of film thickness and supply pressure and decrease of orifice diameter and bearing radius, while the maximum speed increases with strengthening of pressure depression due to decrease of minimum local pressure near orifice. Moreover, the bearing capacity increases with increase of supply pressure, orifice diameter, and bearing radius and decreases with increase of film thickness, while mass flow rate increases with supply pressure, orifice diameter, and film thickness and it is not sensitive to bearing radius.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3