Understanding white etching cracks in rolling element bearings: State of art and multiple driver transposition on a twin-disc machine

Author:

Ruellan Arnaud12,Cavoret Jérôme1,Ville Fabrice1,Kleber Xavier2,Liatard Bernard3

Affiliation:

1. Laboratoire de Mécanique des Contacts et des Structures (LaMCoS), INSA de Lyon, France

2. Laboratoire de Matériaux Ingénierie et Science (MATEIS), INSA de Lyon, France

3. NTN-SNR, European R&D center, Annecy, France

Abstract

Among the prevalent tribological failures affecting rolling element bearings, an unconventional rolling contact fatigue mode has been identified as white etching cracks. Those correspond to three-dimensional branching crack networks partially bordered by white etching microstructure, eventually leading to premature and unpredictable failure. Recent work supports that this failure mode may be associated with various combinations of operating conditions depending on the application or test rig, but that all seem to converge towards similar tribological drivers related to surface-affected hydrogen evolution at asperity scales, which is known to embrittle the bearing steel. Nevertheless, as white etching cracks remain delicate to reproduce without artificial hydrogen charging, the underlying formation mechanisms remain unsettled. The present work aims to better understand how some of the main tribomechanical and tribochemical drivers may trigger white etching cracks and premature failures. In this study drivers such as sliding kinematics, water contamination, and electrical potential and lubricant additives are progressively transposed on a twin-disc machine that provides an enhanced control of contact parameters. Various attempts advocate that the tested drivers are not self-sufficient to reproduce the failure mode in such apparatus, but confirm that specific lubricant additives may reduce the fatigue life by promoting surface-initiated embrittled cracking similar to white etching cracks. A local criterion accounting for the local sliding frictional power dissipation and the lubrication regime is further proposed to assess the risk of white etching cracks based on the analysis of various reproduction and occurrences.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3