Thermal analysis and optimization of bionic cooling channels of gas foil thrust bearings

Author:

Zhao Qi1,Yan Shaohang1,Qiang Mingchen1,Hou Yu12,Lai Tianwei12ORCID

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China

2. MOE Key Laboratory of Cryogenic Technology and Equipment, Xi’an, China

Abstract

Under high-temperature conditions, heat evacuation of foil bearing has a significant impact on bearing performance, including loading performance and reliability. During bearing operation, viscous dissipative heat in the lubricant gas film is the main source of heat generation. For foil bearings, enhancing the heat evacuation efficiency is essential to extend the bearing service life in high-temperature environments. For heat evacuation, foil-side cooling is a very effective method. For more in-depth analysis of thermal characteristics of the foil bearing, a three-dimensional (3D) thermal-elasto-hydrodynamic (TEHD) coupling model of multi-leaf thrust foil bearing (MLTFB) with cooling channel is established in this paper. In view of the good heat transfer performance and more uniform gas velocity distribution in bionic flow channels, various bionic cooling channels of foil bearings are proposed and the structural parameters are optimized. The effects of cooling channel type, cooling channel width, span ratio, cooling gas supply mode, and rotational speed on the thermal and loading performance of foil bearings are investigated. The studies demonstrate that the spider net round cooling channel exhibits higher heat transfer performance and improved uniformity of temperature. Compared to the cooling gas supply from inner edge, the cooling gas supply from the outer edge proves to be more effective. The maximum temperature of lubricant gas film can be greatly reduced with wider cooling channels and a smaller channel span at the outer edge. The maximum temperature of lubricant gas film and bearing load are reduced as the Reynolds number of cooling gas increases. There exists an optimal Reynolds number that can achieve the highest uniformity of temperature.

Funder

the National Key R&D Program of China

the Youth Innovation Team of Shaanxi Universities

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3