Analysis of nonlinear viscoelastic lubrication using Giesekus constitutive equation

Author:

Abbaspur Ali1,Norouzi Mahmood1,Akbarzadeh Pooria1ORCID,Vaziri Seyyed Amirreza1

Affiliation:

1. Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

Recent research has shown that adding polymeric materials to mineral oils and consequently changing the behavior of Newtonian lubricants into viscoelastic materials will enhance the lubrication performance. Therefore, in order to examine theoretically the actual behavior of such lubricants, a suitable viscoelastic model must be considered. Hence, in this paper, the solution of fluid film lubrication is presented analytically using the Giesekus viscoelastic model. This constitutive model is based on the concept of configuration-dependent molecular mobility and is suitable for predicting the nonlinear viscoelastic properties. Indeed, it can describe the power-law regions for viscosity, the normal-stress coefficients, the elongational viscosity, and also the complex viscosity. In order to linearize the momentum and constitutive equations and obtain the generalized Reynolds equation, the perturbation method is used and the mobility factor is considered as the perturbation parameter. Here, the effects of mobility factor, outlet-to-inlet height ratio, and Weissenberg number on fluid film pressure distribution, velocity profiles, load capacity, friction coefficient, and first normal stress difference are investigated in detail. Due to the normal stress difference in viscoelastic fluids, using a viscoelastic fluid in contrast a Newtonian fluid can significantly increase the load-carrying capacity of bearing. Another result is with increasing the value of mobility factor, the fluid viscosity decreases and consequently the pressure distribution decreases simultaneously while the lateral normal stress in the y-direction increases. The term pressure distribution is more negligible than the term lateral normal stress and as a result by increasing the mobility factor the load-carrying capacity increases too. It is also observed that, when the Weissenberg numbers tend to infinity regardless of the mobility factor, the friction coefficient tends towards a constant value and rubber-like elasticity is responses.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3