Large hydrodynamic thrust bearing: Comparison of the calculations and measurements

Author:

Wodtke M1,Schubert A2,Fillon M3,Wasilczuk M1,Pajączkowski P2

Affiliation:

1. Faculty of Mechanical Engineering, Gdansk University of Technology, Gdansk, Narutowicza, Poland

2. ALSTOM Hydro (Switzerland) Ltd, Birr, Switzerland

3. Institut Pprime, Département Génie Mécanique et Systèmes Complexes, SP2MI, Futuroscope Chasseneuil Cedex, France

Abstract

Hydrodynamic thrust bearings, used to carry axial loads in heavily loaded shafts of water power plants hydro turbines, can reach outer diameters even exceeding 5 m. In such large objects scale effect could be observed. According to this, allowable bearing specific load assuring safe operation of the bearings has to be decreased, which increases thrust bearing dimensions. This effect is caused by excessive thermal deflections of bearing pads, which significantly change oil gap geometry, and in consequence, decreases bearing load-carrying ability. Design of hydrodynamic thrust bearing of large dimensions seems to be a demanding engineering challenge, and additional difficulty comes from limited possibilities of experimental testing of these systems due to high costs. Theoretical investigations, carried out with the use of specially developed computer models, remain a feasible alternative for experimental research. But the accuracy of the models is not often directly validated, because of the lack of appropriate experimental data coming from large objects. In this paper, results of calculations carried out for a large hydrodynamic thrust bearing are shown and compared to measurement data obtained at bearing commissioning stage. Pad temperatures profile sliding surface, oil pressure in hydrodynamic gap and film geometry are compared to the measured values. According to the presented comparisons, some conclusions are drawn with respect to the accuracy of models used to predict large thrust bearing performance.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3