Tribological performance of NiAl alloy containing graphene nanoplatelets under different velocities

Author:

Xue Bing1,Zhu Huanli1,Shi Xiaoliang2

Affiliation:

1. College of Mechanical Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China

2. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, China

Abstract

In this study, the friction and wear behavior of NiAl alloy containing graphene nanoplatelets (NG) under different sliding velocities were investigated. NG shows the better tribological performance, if compared to NiAl-based alloy without graphene nanoplatelets (NA). In the range of sliding velocities varying from 0.2 to 1.2 m/s, the formation of glaze layer in NG could be easily distinguished. The beneficial effect of graphene nanoplatelets (GNPs) for the formation of glaze layer of NG is obvious, if compared to NA, resulting in the reduction of friction and improvement of wear resistance of NG. Moreover, a suitable higher sliding velocity will be better for the formation of glaze layer, but the wear rate will gradually increase with the increase of sliding velocity. It can be concluded that GNPs hold great application prospect as an effective solid lubricant to improve the tribological performance of NiAl alloys.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3