Performance evaluation of different types of micro-textured hydrostatic spindles under the main influencing factors

Author:

Chen Dongju1ORCID,Zhao You1,Zha Chunqing1,Pan Ri1,Fan Jinwei1ORCID

Affiliation:

1. Mechanical Industry Key Laboratory of Heavy Machine Tool Digital Design and Testing, Faculty of Materials and Manufacturing, Beijing University of Technology, PR China

Abstract

To improve the performance of a hydrostatic bearing, a method of constructing micro-textures on the inner surface of a bearing is proposed to increase the bearing capacity and reduce the friction coefficient. In this paper, the composite texture is innovatively proposed, and the theoretical models of hydrostatic radial bearings under four situations including non-texture, square, spherical, and composite textures are established. The effect of texture shapes and texture parameters on bearing performance is numerically studied and the influence level of various factors on bearing performance is evaluated innovatively using the cross-correlation analysis. The results show that the presence of a micro-texture can improve the bearing capacity and reduce the friction coefficient of the bearing compared with smooth surface bearings; the composite micro-texture increases the bearing capacity by about 9.5%, the stiffness increases by about 8.2%, and the friction coefficient is reduced by about 10.5%; there is an optimal micro-texture unit area ratio (between 30% and 40%) making the bearing capacity largest and the friction coefficient smallest; finally, the influence level of various factors on the bearing performance is evaluated. The relative depth of the texture has the greatest influence on it, followed by the number of textures, and finally the unit area ratio. The above results will provide a theoretical basis for the design of hydrostatic bearings with micro-textures.

Funder

The National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3