Lubrication mechanisms of hexagonal boron nitride nano-additives water-based lubricant for steel–steel contact

Author:

Bin Abdollah Mohd Fadzli12ORCID,Amiruddin Hilmi12ORCID,Alif Azmi Muhammad1,Mat Tahir Noor Ayuma1

Affiliation:

1. Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Malaysia

2. Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Malaysia

Abstract

This study intends to explore the lubrication mechanism of hexagonal boron nitride nano-additive. Synergistic analysis comprising worn surface observation, surface wettability testing, and the Stribeck curve principle is used to test this water-based lubricant on steel–steel contact. Distilled water and 0.1–5.0 vol.% hexagonal boron nitride nano-additive is used to prepare a mixture using sonification technique. A viscometer is employed to determine the viscosity of the nanolubricant. A four-ball tribometer is employed to determine the tribological characteristics and lubrication performance. Hamrock and Dowson equations are used to determine the minimum film thickness needed for lubrication. Surface morphology characteristics are inspected using energy-dispersive X-ray spectroscopy, scanning electron microscopy, surface tension meter, and profilometer. The efficacy of the lubricant as friction and wear-reduction additive is determined to have a mixed lubrication regime with the optimum concentration of 1.0 vol.% hexagonal boron nitride. Protecting film, mending effect, rolling effect, and polishing effect have been recommended as the lubrication mechanisms. Increasing the addition of hexagonal boron nitride additives may lead to a change in the lubrication regime from mixed to hydrodynamic, where agglomeration is observed in the nanoparticles, and an increase in friction is observed.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3