Lubricity performance of hydrogen-free CVD growth of graphene on copper particles as an additive in paraffin base oil

Author:

Rahman Nurul Liyana1,Amiruddin Hilmi12ORCID,Abdollah Mohd Fadzli Bin12ORCID,Umehara Noritsugu3

Affiliation:

1. Faculty of Mechanical Technology and Engineering, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia

2. Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia

3. Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan

Abstract

This study aims to examine the impact of carbon precursor materials, which are oil palm fiber (OPF) and waste polystyrene (PS), on friction and wear properties of paraffin base oil added with graphene-coated copper (Cu) additive. The graphene was synthesized on Cu particles via hydrogen-free chemical vapor deposition method. The graphene was characterized using Raman spectroscopy and transmission electron microscopy. The lubricity properties of 0.6 wt.% of synthesized graphene-coated Cu additive in paraffin base oil was analyzed based on its tribological behavior using a four-ball tribometer. From the quantitative and qualitative characterization analysis, graphene-coated Cu additive synthesized using 50 wt.% OPF carbon precursors has a good-quality graphene with minimal defects and a well-ordered lattice structure. From the tribological analysis, the paraffin base oil added with graphene-coated Cu additive synthesized using 50 wt.% OPF carbon precursor has the lowest coefficient of friction of 0.07 and wear rate of 1.6 × 10−5 mm3/min. Hence, it can be suggested that incorporating graphene-coated Cu particles, synthesized from a 50 wt.% OPF carbon precursor, into base oil shows great potential as an environmentally friendly additive, particularly in terms of enhancing lubrication performance.

Funder

Ministry of Higher Education Malaysia

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3