Erosion wear behaviour of A357/fly ash composites

Author:

Bera Tanusree1ORCID,Prakash Ved1ORCID,Acharya Samir K1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Rourkela, Sundargarh, Odisha, India

Abstract

In this article, a new metal–matrix composite was developed with fly ash (an industrial waste from petroleum industries) as reinforcement and aluminium metal (A357) as a matrix by squeeze casting technique. This study was concentrated on the processing of the composites with different weight percentage ranging from 0 to 10 wt.% in a step of 2.5 each and also reported the erosion wear behaviour. Solid particle erosion of A357/fly ash composites was carried out with four velocities (48, 70, 82 and 109 m/s), at impact angles (30°, 45°, 60° and 90°), with silica as an abrasive particle at ambient temperature. The eroded surfaces were analysed by scanning electron microscopy. The results revealed that the impact velocity and impingement angle both affected the erosion wear behaviour of the composites. The erosion rate rises with an increase in impact velocity, irrespective of the change in impingement angle and weight percentage of the fly ash. The erosion mechanism studied for the composites is microploughing and microcutting.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3