An experimental analysis of the hydrodynamic contribution of textured thrust bearings during steady-state operation: A comparison with the untextured parallel surface configuration

Author:

Henry Y1,Bouyer J1,Fillon M1

Affiliation:

1. Institut Pprime, CNRS – Université de Poitiers – ENSMA, UPR 3346, Departamento Génie Mécanique et Systèmes Complexes, France

Abstract

Textured surfaces are the subject of a great deal of research work in tribology, which mainly involves numerical studies of lubricated contacts. A variety of shapes and arrangements of textures can be found, these being as numerous as the different authors. Depending on the configuration, it has been shown that the presence of the texture can provide better lubrication efficiency through both a reduction of friction and an increase in load-carrying capacity. However, improving bearing performance implies a specific geometrical configuration for given operating conditions. The improvement in lubricated contact performance by texturing the active surface has been demonstrated using experimental studies concerning, for example, pin-on-disk, mechanical seal, camshaft, journal bearing, thrust bearing, and piston ring set-ups. The objective of the present experimental analysis is to provide, using local measurements, a better understanding of the influence of surface texturing on the steady-state behavior of thrust bearings. To achieve this goal, the experimental device is equipped with 80 sensors such as thermocouples and pressure transducers which allowed a proper assessment of the phenomenology at the film/pad interface. The tests are conducted on five hydrodynamic thrust bearings, among which four are textured. Results show that, for the studied configurations, the textured thrust bearings can help to reduce friction up to 30% at low loads while for heavy loads, their performance is equivalent or even lower than that of an untextured planar bearing.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3