Influence of surface topography on the friction and dynamic characteristics of spur gears

Author:

Li Zhi1ORCID,Wang Jianmei1,Zhang Hong1,Chen Jian2,Liu Kun2

Affiliation:

1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China

2. School of Mechanical Engineering, Hefei University of Technology, Hefei, China

Abstract

As an important excitation source of gear dynamic problems, the time-varying friction of tooth surface is closely related to its topography. Considering the friction characteristics of tooth surface is of great significance to improve the calculation accuracy of gear dynamic characteristics. In order to solve the problem that the variation of tooth friction coefficient was simplified too much in the previous gear dynamics research, the time-varying tooth friction coefficient is obtained by fitting the results of twin-disc test in this research. To investigate the influence of tooth surface topography on the friction and dynamic characteristics of spur gears, the relationship between surface topography and friction coefficient under line contact condition is studied using twin-disc tester and analyzed by 3D topography parameters in ISO 25178. The time-varying friction coefficients of spur gears with different tooth surface topographies during meshing are fitted with the experimental results. The influence of time-varying friction coefficient caused by the tooth surface topography on the dynamic characteristics of spur gears under different operating conditions is examined by substituting the fitting curves of time-varying friction coefficient into the multi-degree-of-freedom dynamic model of spur gears. The results show that this influence is mainly embodied in the off-line-of-action direction, which is the direction of friction force acting on the tooth surface. The dynamic characteristics of gears with different surface topography are obviously different under various working conditions. The method presents in this paper simplifies the application of tooth contact analysis in the study of time-varying tooth friction characteristics, which will provide a new way for the gear dynamics research considering the tooth surface topography.

Funder

National Natural Science Foundation of China

Taiyuan University of Science and Technology Scientific Research Initial Funding

Shanxi Provincial Science and Technology Innovation Projects

Shanxi Provincial Key Science and Technology Special Projects

Coordinative Creation Center of Taiyuan Heavy Machinery Equipmen

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3