Effect of the vibration on friction and wear behavior between the carbon strip and copper contact wire pair

Author:

Yang HJ1,Chen GX1,Zhang SD1,Zhang WH1

Affiliation:

1. State Key Laboratory of Traction Power, Tribology Research Institute, Southwest Jiaotong University, Chengdu, People’s Republic of China

Abstract

This article reports an experimental study on the friction and wear behavior of carbon strip sliding against copper contact wire under strong electric current utilizing a high-speed block-on-ring tester. The dynamic mechanism of electric arc generation was investigated. Scanning electron microscopy was used to observe morphology of worn surfaces of the carbon strips. The results show that arc discharge has a certain correlation with low-frequency vibration of the carbon strip. The arc discharge frequency and the average single arc discharge energy initially decrease and then tend to stable with increasing normal load at different speeds. The wear rate increases first and then decreases and has the minimum when the load is equal to 100 N especially. Moreover, the wear rate steadily increases with increase in arc discharge energy and is almost directly proportional to arc discharge energy. Arc erosion was a dominant wear mechanism occurred in carbon strip sliding against copper contact wire at a low load, accompanying with adhesive wear and material transferring. However, mechanical wear was a main wear mechanism at a high load. Severe arc erosion weakened the conductivity of the carbon strip.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3