Formation mechanisms of white etching cracks and white etching area under rolling contact fatigue

Author:

Evans M-H1,Wang L1,Wood RJK1

Affiliation:

1. National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, UK

Abstract

The formation of white etching cracks in the 1 mm zone beneath the contact surface in steel rolling element bearings causes a premature wear failure mode called white structure flaking. The formation drivers of white etching cracks are contested, as are the initiation and propagation mechanisms of the cracks. Hydrogen diffusion into bearing steel sourced from the hydrocarbon lubricant or water contamination and transient operating conditions have been suggested as formation drivers. Extensive work has been conducted at Southampton to further understanding of white structure flaking and this paper summarises these evidences and the conclusions made. Serial sectioning has been used to map subsurface wear volumes of wind turbine gearbox bearings from service and large-scale test rigs, test specimens/bearings from laboratory under hydrogen charged conditions and non-hydrogen charged conditions. The process involves polishing of cross sections of test specimens/bearings at ∼3–5 µm material removal intervals typically over hundreds of slices, and this was used to map white etching cracks in their entirety for the first time. Serial sectioning has allowed a comprehensive investigation of the initiation and propagation mechanisms of white etching cracks and thresholds for their formation with respects to concentration of diffusible hydrogen, contact pressure and number of rolling cycles. From these studies it has been found that white etching cracks can form by subsurface crack initiation at inclusions under hydrogen charged and non-hydrogen charged conditions; hence it has been confirmed that this is one mechanism of WEC formation. Small/short sized sulfide inclusions, globular manganese sulfide + oxide inclusions and small globular oxide inclusions between ∼1 µm and 20 µm in diameter/length predominated as crack initiators. In addition, detailed focused ion beam/transmission electron microscopic studies have been conducted to enhance the understanding of butterfly crack and white etching area formation mechanisms.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3