Linear friction tester design and validation

Author:

Shams Kondori Mehran1ORCID,Taheri Saied1

Affiliation:

1. Engineering Mechanics, Virginia Polytechnic Institute and State University, USA

Abstract

Due to the complexity of friction phenomena, empirical analysis is the best way to predict the friction coefficient. To accomplish this, laboratory test rigs are needed. Although a rotary dynamic friction test bed was available to the authors, it had its limitations, such as low speed, inducement of lateral force, and the limitation of testing samples with different shapes. This paper will explain the process of designing and manufacturing a novel test setup for measuring friction and wear of the tire. The newly designed test rig can apply dynamic loading during the tests, and it can automatically measure the wear rate and temperature between cycles. In addition, it can be used for measuring the wear rate of rubber samples sliding on different types of surfaces. Therefore, experiments can be run under more controlled conditions. The designed linear friction tester can slide flat and round rubber samples approximately three meters across a large flat surface. The frictional force of rubber samples can be measured for various normal loads, velocities, and surface conditions. The new setup can automatically control the applied normal load on the sample using proportional–integral–derivative controller control. The important difference between this novel design and the existing testers used by other researchers is implementing the ball screw technology and the servo motor with high accuracy encoder to achieve highly accurate test results. In this design, the new mechanism for the ball screw is designed to increase the speed limit and eliminating vibrations while keeping the precision. In addition, in this design, the sample's mass can be measured automatically after each test cycle, thus providing a measure of the rate of wear of the rubber. In this study, the data collected by the linear friction tester is validated by comparing the data to the data collected by the dynamic friction tester (a validated rotary friction tester that exists in CenTiRe Lab). The data collected by the new setup was later used to benchmark the Persson analytical friction model.

Funder

NSF I/UCRC Center for Tire Research

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3