Tribological activity of ionic liquid stabilized calcium-doped ceria nanoparticles

Author:

Kumar Bharat1,Verma Dinesh K12,Kavita 1,Rastogi Rashmi B1ORCID

Affiliation:

1. Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, India

2. Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study & Research, V.B.S. Purvanchal University, Jaunpur, India

Abstract

10% Calcium-doped ceria (CCO) nanoparticles have been synthesized by sol–gel method. Their surface has been modified by surfactants, sodium dodecyl sulfate and 1-decyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl) imide to yield SCCO and IL-CCO respectively. Powder X-ray diffraction patterns of nanoparticles and surface modified nanoparticles are indicative of cubic phase of ceria. Fourier transform infrared spectra confirm the surface modification of nanoparticles, particularly with ionic liquid. Morphology of the as-prepared nanoparticles investigated by field emission scanning electron microscopy, transmission electron microscopy/high-resolution transmission electron microscopy reveals that there is decrease in size of nanoparticles from CCO followed by SCCO and then IL-CCO. Wrapping of nanoparticles by ionic liquid is apparent in the scanning electron microscopy (SEM) and transmission electron microscopic (TEM) images. The tribological activity of the well-characterized nanoparticles has been evaluated at the optimized concentration, 0.2% w/v in paraffin oil under ASTM D4172 and ASTM D5183 test conditions using a four-ball tester. Based on tribological parameters, mean wear scar diameter, average friction coefficient, load-carrying capacity, and loss of frictional power, their relative performance followed the order – IL-CCO > SCCO > CCO. Worn surface analysis by scanning electron microscopy/energy-dispersive X-ray spectroscopy, atomic force microscopy corroborated the tribological performance. The order of the activity could be correlated with the size of the nanoparticles. Moreover, lubricating properties of ionic liquid have been instrumental for the exalted activity of IL-CCO. The presence of heteroatoms of ionic liquid, nitrogen, oxygen, fluorine, sulfur along with calcium and cerium of nanoparticles in energy-dispersive X-ray (EDX) spectroscopy analysis of the wear scar surface lubricated with IL-CCO confirms the vital role of ionic liquid towards the tribological activity.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3