The effects of diesel contaminants on tribological performance on sliding steel on steel contacts

Author:

Penchaliah R1,Harvey T J1,Wood R J K1,Nelson K2,Powrie H E G3

Affiliation:

1. National Centre for Advanced Tribology at Southampton, School of Engineering Sciences, University of Southampton, Southampton, UK

2. Chevron Oronite Company, LLC, Additive Synthesis and Processing Unit, Richmond, CA, USA

3. GE Aviation, School Lane, Chandler's Ford, Hampshire, UK

Abstract

This article presents the findings from a parametric study examining the effect of four contaminants (soot, oxidation, moisture, and sulphuric acid) at varying levels (four for each). It was observed that all contaminants and contaminant levels reduce the conductivity of the oil. Oxidation and soot contaminants produced large increases in viscosity. The wear rate was mainly influenced by acid and soot additions, while the coefficient of friction was increased by all contaminants and contaminant levels. The steady-state charge levels changed for some contaminants. The best correlation of steady-state charge with the other measured tribological parameters of wear rate, friction, and temperature is seen for the series of oxidized oils. The multi-contaminated oil (L4 × 4) shows remarkably little degradation in tribological performance. Analysis of the wear mechanisms shows that soot and oxidation produced abrasion and polishing wear, respectively, while sulphuric acid and moisture produced corrosive wear.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3