Influence of microscale effect on the radial rotation error of aerostatic spindle

Author:

Zha Chunqing1,Li Tianbao1,Zhao You1,Chen Dongju1ORCID

Affiliation:

1. Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, PR China

Abstract

This paper presents the influence of the microscale effect on the radial rotation error of aerostatic spindle, which is determined by the corresponding stiffness, damping, and unbalance mass. A microscale gas film flow model is used to simulate the static performance of the aerostatic bearing by introducing the microscale effect factor Q in this paper. Firstly, the radial stiffness and damping coefficients of aerostatic bearing were calculated considering microscale effect factor Q, therefore, the position of the rotating shaft in radial plane was deduced, and the corresponding rotation error was obtained. Finally, the simulation results of the stiffness and radial rotation error were verified by the experiment on the shaft test table, and the motion orbit was measured by a displace sensor with a high precision standard ball. The experimental results indicated that the simulated result considering the microscale effect factor Q was more consistent with the actual experimental value, which provided a reference for the design and optimization of the aerostatic spindle.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3