Investigation of local hot spots in sealing rings with different sealing materials

Author:

Gong Ran1ORCID,Li Xiang1,Xu Yi2,Zhang He2

Affiliation:

1. Department of Automotive Engineering, Jiangsu University, Zhenjiang, China

2. China North Vehicle Research Institute, Fengtai District, Beijing, China

Abstract

The local high temperature in the sealing pair is prone to cause local wear, which easily leads to seal failure. In this paper, a numerical method based on the finite element method is proposed to investigate the local high-temperature hot spot in a sealing ring with different sealing materials. The distribution of hot spots on the sealing surface is visualized by numerical computations. The critical speeds of the hot spot for the metal, composite, and powder metallurgical sealing materials are obtained under different friction coefficients. Based on the obtained results, the quantitative correlation between the critical speed of the hot spot and elastic modulus, thermal conductivity, specific heat capacity, thermal expansion coefficient, and seal sizes is determined. Then, a test method is designed to evaluate the thermal instability of the sealing ring. Scanning electron microscopy is utilized to examine the surface morphology of the sealing rings after the hot spots appear. The results of the present study demonstrate that the proposed method is consistent with the experiment. It indicates the effectiveness of the simulation method for investigating local hot spots in the sealing ring.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3