Support recycling in additive manufacturing: A case study for enhanced wear performance of Ti6Al4V alloy

Author:

Yamanoglu Ridvan1ORCID,Bahador Abdollah2,Kondoh Katsuyoshi3

Affiliation:

1. Engineering Faculty, Metallurgical and Materials Engineering Department, Kocaeli University, Kocaeli, Turkey

2. Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

3. JWRI, Osaka University, Ibaraki, Osaka, Japan

Abstract

The production of metals by additive manufacturing is developing rapidly. After production, support structures emerge as waste materials. In this study, Ti6Al4V support structures recycled from the selective laser melting process were consolidated by vacuum hot pressing. Spherical and irregularly shaped Ti6Al4V alloy particles were also used for the comparison as raw materials. All raw materials have been subjected to the same sintering process by hot pressing. The microstructures of the samples were carried out, and their dry sliding wear performance was studied. The samples produced from support structures showed the highest wear performance compared to the powder forms of raw materials. This study showed that the support structures from additive manufacturing could be recycled and transformed into full dense structures by pressure-assisted sintering techniques, and enhanced wear performance can be obtained.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3