Computational micromechanical modelling of the material removal process in a carbon fibre composite under single-erodent particle impact

Author:

Deliwala Ajaz A1ORCID,Yerramalli Chandra S1

Affiliation:

1. Aerospace Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, India

Abstract

A multiscale model is developed to understand the material removal process in a unidirectional carbon fibre epoxy composite impacted by a single-erodent particle. The embedded cell approach is used to model the carbon fibre and epoxy at a microscale. The micromodel is embedded centrally in the macroscale lamina of the composite plate. The carbon fibre is considered to be elastic with orthotropic strain limits as the failure criteria. The epoxy matrix is modelled as an elastic--plastic material with multilinear isotropic hardening. The maximum equivalent plastic strain limit is used as the matrix material failure limit. Using this embedded micromechanics model, the role of matrix and the fibre in developing the composite material erosion behaviour has been clearly elucidated. The results from the simulation indicate the change in the matrix erosion behaviour as a function of the fibre volume fraction. For the current thermoset matrix, material erosion response changes from brittle behaviour to ductile behaviour with an increase in fibre volume fraction. The current study has been able to highlight the individual role of matrix and the fibre in developing the semi-ductile erosion response peculiar to a fibre-reinforced composite material.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3