Affiliation:
1. SRM Institute of Science and Technology, India
Abstract
In this work, a six degrees of freedom heave-pitch mathematical model has been developed for an aircraft with main and nose oleo-pneumatic landing gear. Nonlinearities in stiffness, damping, and bending characteristics of landing gears and tires are incorporated in the model. Friction is an incidental and inevitable reaction that sticks along with the strut motion during the event of ground contact. The friction generated in the landing gear is the sum of the contribution from bearings and seals fitted in the landing gear. This study has focused on investigating the amount of frictional resistance gained by the struts while an aircraft is landing at various sink rates. The strut vertical forces, seal friction forces, and bearing friction forces generated in the main and nose landing gear during touchdown have been presented in this work. This preliminary estimation of friction forces for a range of sink rates aids the designer in developing optimal geometric or strut parameters in the design stage. This work also helps to calculate total landing loads for the certification of the landing gear.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献