Transient elastohydrodynamic analysis of finite line contact under load impulse

Author:

Chippa SP1ORCID,Borse NV1

Affiliation:

1. Department of Mechanical Engineering, Vishwakarma Institute of Technology, Pune, India

Abstract

Numerical analysis is performed to study the transient behavior of EHL finite line contact of a cylindrical roller and flat plane under load impulse. In the present work, effect of pressure on the density and viscosity of lubricant is considered. Finite difference method is used to discretize the governing equations. Multilevel Multi-integration method is used to calculate the elastic deformation. Moreover, Multigrid method is implemented to accelerate the convergence process. Uniqueness of this finite line contact analysis is that it provides an ability to determine the transient behavior of lubricated contact even at the edges of roller. Results show that the load impulse causes squeezing and separation movement within the contact that develops film dimple and pressure ripples at the inlet region, which propagate towards the exit region due to the entrainment motion. It is noticed that the time taken by oil film [Formula: see text] to travel the Hertzian contact width and the time period [Formula: see text] of load impulse decides the behavior of lubricated contacts. Firstly, under a relatively heavy load when the contact width is large enough so that [Formula: see text], then a significant rise in central film thickness (CFT), central minimum film thickness (CMFT) and minimum film thickness (MFT) occurs after the execution of load impulse. Further, under the light load generating a relatively small contact width such that [Formula: see text], then comparatively a small rise in CFT occurs right during the load impulse. Lastly, for a given load if the time period of impulse [Formula: see text] is large enough satisfying the condition [Formula: see text], then a considerable reduction in CFT, CMFT and MFT takes place during the application of load impulse. Moreover, as compare to other cases, for [Formula: see text] the steady state condition is reestablished after a relatively more number of time cycles. It is observed that the maximum pressure and MFT occurs at the contact edges of roller which can be controlled by a proper choice of the radius of end profile [Formula: see text].

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3