Effects of groove orientation on transmission characteristics of hydro-viscous film in the parallel-disk system

Author:

Gong Huasheng1,Xie Haibo1,Hu Liang1ORCID,Yang Huayong1

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China

Abstract

The disk groove can greatly influence the hydrodynamic behaviors of the rotating film, especially on the cooling performance and the transmission efficiency. In the present work, the effects of groove orientation on the hydro-viscous transmission of the parallel-disk system are investigated. The Reynolds equation and thermal equation, considering tangential Coriolis effect and temperature–viscosity dependency, are derived and solved. The effects of the groove orientation on the shear stress, load-carrying capacity, viscous torque, and transmission efficiency are analyzed. The results reveal that the Coriolis resisting torque can be restrained but the load-carrying capacity declines if the groove orientation is consistent with the rotating direction, and the variation of the transmission efficiency can even be inverted at the turning point of the groove orientation. Therefore, the effects of groove orientation must be paid more attention in the hydro-viscous transmission.

Funder

Major State Basic Research Development Program of China

Science Funding for Creative Research Groups of the National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Groove Orientation on Transmission Characteristics of Hydro-viscous Clutch Considering Oil Film Cavitation;2023 9th International Conference on Fluid Power and Mechatronics (FPM);2023-08-18

2. A Numerical Method for Extrication Characteristics of TBM Cutter-Head with the HVC;Chinese Journal of Mechanical Engineering;2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3