Performance analysis of journal bearing having surface waviness operating under misaligned condition

Author:

Bangotra Arun1ORCID,Sharma Sanjay1ORCID,Taufique Reza1ORCID,Byotra Deepak1ORCID

Affiliation:

1. Principal, Govt. Polytechnic Jammu and SoME, Shri Mata Vaishno Devi University, Katra, India

Abstract

In this present study, the effect of surface waviness on the performance of journal bearing operating in misaligned conditions has been investigated. The journal’s misaligned conditions in the present analysis are taken about the circumferential, the axial, and both axes. For computing the pressure of lubricant inside the bearing, the finite element method has been applied to solve the Reynolds equation and thus static parameters are obtained. The static parameters, that is, load carrying capacity and coefficient of friction are evaluated at different waviness variables and are compared with misaligned journal bearing without surface waviness. It is observed that misalignment considered in both axes has the most severe effect on static performance parameters as compared to misalignment only in the circumferential or axial axis. With the increase in circumferential waviness number up to n  =  5, the load-carrying capacity increases, and the coefficient of friction decreases under high eccentricity ratios. Change in waviness amplitude also impacts the bearing performance. Axial waviness always deteriorates the bearing performance. Combined waviness increases the load carrying capacity and decreases the coefficient of friction when circumferential waviness number n  =  5 and axial waviness number m  =  2. The highest performance enhancement ratio is attained at an eccentricity ratio of 0.8 with a circumferential waviness number n of 5, axial waviness number m of 2, and dimensionless waviness amplitude [Formula: see text] of 0.075.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3