Prediction of suitable heat treatment for H13 tool steels by application of thermal shock fatigue cycle

Author:

Karthikeyan Palani1,Pramanik Sumit1ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203, Chennai, Tamil Nadu, India

Abstract

In industry, thermally shocked components lead to early failures and unexpected breakdowns during production resulting in huge losses in profit. Thus, the present study investigates the as-received, hardened and hardened and nitrogen treated H13 tool steels subjected to a thermal shock gradient similar to the actual industrial applications. The thermal shock gradients were created by using an in-house-built thermal shock fatigue cyclic treatment machine. The effect of thermal shock fatigue cyclic treatments at 1000 and 2000 thermal shock cycles in hot and molten metal chambers was noticed. All the thermal shock fatigue cyclic-treated samples were analysed by hardness, X-ray diffraction, microscopy and magnetic tests. The interesting changes in hardness, distorted crystal structure and crack initiation were found to be different for differently treated H13 tool steel specimens. The molten aluminium was more prone to stick to the surface of as-received as well as hardened and nitrogen treated steel compared to the hardened H13 steel specimens, which would delay the crack initiation. The wear resistance properties of the hardened H13 steel specimens were found to be higher than as-received and hardened and nitrogen treated H13 steel specimens after thermal shock fatigue cyclic treatment. The loss in magnetic properties was significant for the hardened and hardened and nitrogen treated samples compared to as-received H13 tool steel specimens. Therefore, the present 1000 and 2000 thermal fatigue cycles for 30 s at 670 °C would be worthy to predict the proper heat treatment method to design the parameters as well as the life of die-casting components and to help in the economical production of casting.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3