Tribological behavior of various ceramic materials sliding against CF/PTFE/graphite-filled PEEK under seawater lubrication

Author:

Yin Fang-long1,Ji Hui1,Nie Song-lin1ORCID

Affiliation:

1. Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China

Abstract

In order to select appropriate antifriction and wear resistance material combinations for key frictional pairs in seawater hydraulic components, tribological characteristics of SiC, Si3N4, Al2O3, and ZrO2 ceramics sliding against carbon fiber/polytetrafluoroethylene/graphite-filled polyetheretherketone composite lubricated with seawater were comparatively investigated with a ring-on-ring test rig. The results show that the nonoxide ceramics (Si3N4 and SiC), especially the Si3N4 ceramic, exhibited lower friction coefficients and smaller wear rates than those of oxide ceramics (Al2O3 and ZrO2). And the tribological behaviors of polyetheretherketone/Si3N4 tribopair under dry friction, pure water, and seawater lubrications are further comparatively studied to explore the effect of lubricating medium on the tribological characteristics of Si3N4 ceramic. It is found that the lubricating effect of SiO2 and Si(OH)4 films generated by tribo-chemical reaction between Si3N4 and water is the main factor for the relatively low friction coefficient and wear rate of polyetheretherketone/Si3N4 tribopair under aqueous lubrication. Under seawater lubrication, the Mg(OH)2 and CaCO3 deposition layers caused by the chemical reaction of Mg2+ and Ca2+ in seawater could inhibit the generation of SiO2 and Si(OH)4 films and increase the counterface roughness. As a result, the tribological behaviors of polyetheretherketone/Si3N4 tribopair are worse under seawater lubrication than that of pure water lubrication.

Funder

CSIC Key Laboratory of Thermal Power Technology Open Foundation

Beijing Postdoctoral Research Foundation

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Beijing Municipality

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3