Affiliation:
1. Leonardo Centre for Tribology, Department of Mechanical Engineering, University of Sheffield, UK
Abstract
Pin joints are found in many large articulating structures. They tend to be under high load and articulate slowly; so, the joints typically operate in the boundary or mixed lubrication regimes. This means that the operating torque depends on the respective proportions of liquid and solid contact between the joint mating faces. In this article, a mixed lubrication model of a grease-lubricated landing gear joint is established to determine a theoretical Stribeck curve, frictional torque and lubricant film thickness under different loads. Parameters describing pin joint working conditions, geometry, lubricant properties and pin/bush texture are used. The model can also predict the proportion of the load that is supported by contacting asperities and lubricant film. The changing proportions of these two parts indicate transformations between different lubrication regimes. Experiments on an instrumented pin joint have been carried out to compare with the predicted friction and torque performance. Theoretical calculation results show good consistency with experimental plots at high load. But under low load, the real friction between pin and bush is significantly lower than theoretical predictions.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献