Effect of conical micro-grooved texture on tool–chip friction property and cutting performance of WC-TiC/Co cemented carbide tools

Author:

Pang Minghua12,Liu Xiaojun1,Liu Kun1

Affiliation:

1. Institute of Tribology, Hefei University of Technology, Hefei, China

2. School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang, China

Abstract

Purpose This study aimed to clarify the influence mechanism of conical micro-grooved texture on the tool–chip friction property and cutting performance of WC-TiC/Co cemented carbide tools under flood lubrication conditions. Design/methodology/approach Conical micro-grooved texture was fabricated on the tool rake face using laser texture technology. Metal cutting tests were conducted on AISI 1045 steel with conventional and developed tools for various cutting speeds (80 m/min to 160 m/min) and conical angles of micro-grooved texture (2 ° to 5 °) under flood lubrication condition. The effect of conical micro-grooved texture on the tool cutting force, tool–chip friction coefficient, surface roughness of the machined workpiece, and wear of the tool rake face was determined. Findings Unlike the conventional tools, the conical micro-grooved tools successfully resulted in reductions in metal cutting force, tool–chip frictional coefficient, surface roughness of the machined workpiece, and wear of the tool rake face. These reductions were more noticeable than those of conventional tools with increases in the cutting speed and conical angle of the micro-grooved texture. Detailed research indicated that conical micro-grooved channel exhibits a directional motion characteristic of liquid, which accelerated the infiltration of cutting fluid at the tool–chip interface. Substantial cutting fluid was supplied and stored at the tool–chip interface for the conical micro-grooved tools. Therefore, the conical micro-grooved texture on the tool rake face showed evident advantages in improving tool–chip friction and tool cutting performance. Originality/value The main contribution of this study is proposing a new conical micro-grooved texture on the tool rake face, which improved tool–chip friction and tool cutting performance.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on cutting performance and processing surface quality of micro-structured composite-coated tool: a comprehensive review;The International Journal of Advanced Manufacturing Technology;2024-06-11

2. Research progress of surface texturing to improve the tribological properties: A review;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2023-12-27

3. Recent progress on surface texturing and solid lubricants in tribology: Designs, properties, and mechanisms;Materials Today Communications;2023-06

4. Friction behaviors in the metal cutting process: state of the art and future perspectives;International Journal of Extreme Manufacturing;2022-11-24

5. Study on machining characteristics with variable distribution density micro-texture tools in turning superalloy GH4202;The International Journal of Advanced Manufacturing Technology;2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3