Analysis and comparative study of ferrofluid lubricated circular porous squeeze film-bearings

Author:

Shah Rajesh C1,Patel Dilip B2

Affiliation:

1. Department of Applied Mathematics, Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India

2. College of Renewable Energy and Environmental Engineering, S. D. Agricultural University, Sardarkrushinagar, India

Abstract

Based on ferrohydrodynamic theory by R. E. Rosensweig and continuity equation for film as well as upper and lower porous regions, a general modified Reynolds equation for ferrofluid (FF) lubricated circular discs porous squeeze film-bearings is derived by assuming the validity of the Darcy’s law in the porous regions. The effects of porosity, slip velocity, anisotropic permeability and rotation at both the discs are also included for the study. Here, the FF is controlled by oblique and radially variable magnetic field. The effect of porosity is included because of its advantageous property of self-lubrication, and oblique variable magnetic field is important because of its advantage of generating maximum field at the required active contact zone of the bearing design systems. Using Reynolds equation, different circular porous squeeze film-bearing design systems (e.g. exponential, secant and parallel (flat)) are studied and compared for load-carrying capacity. During the course of investigation, it is observed that uniform magnetic field does not affect on the performances of the bearing systems.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3