An investigation on tribological properties of advanced microwave synthesized molybdenum disulfide as anti-friction additives in commercially available lubricating oils

Author:

Nagarajan Thachnatharen1,Khalid Mohammad234,Zaharin Haizum Aimi5,Sridewi Nanthini1

Affiliation:

1. Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia

2. Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Selangor, Malaysia

3. Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India

4. School of Engineering and Technology, Sharda University, Greater Noida, India

5. Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Bangi, Malaysia

Abstract

The frictional stress between opposing contact surfaces will damage the mechanical parts of a machine. An appropriate lubricant can significantly reduce this. Blending nanoadditives with base oil is claimed to be an effective technique to increase the anti-friction qualities of lubricants using nanotechnology. Advanced microwave synthesized molybdenum disulfide (MoS2) anti-friction nanoadditive was employed in various lubricating oils namely fully synthetic, semi-synthetic, mineral, and hydraulic oil to formulate the nanolubricant. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), and a physical stability observation test were used to study the nanoadditives (MoS2) physicochemical characteristics. The tribological analysis of the MoS2 nanolubricant was measured using the four-ball tribotester. The coefficient of friction (COF) and average wear scar diameter (WSD) of the anti-friction additives were analyzed. The experimental results revealed improvements in COF and WSD in the range of 7.47–15.81% and 6.57–16.07% after the addition of MoS2 nanoparticles in the various lubricating oils. This study discovered that engine oil with advanced microwave-synthesized MoS2 nanoparticles has a significantly lower COF and WSD than engine oil that is not added with the anti-friction additives.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3